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SUMMARY 
A class of shock-capturing Petrov-Galerkin finite element methods that use high-order non-oscillatory 
interpolations is presented for the one-dimensional compressible Euler equations. Modified eigenvalues 
which employ total variation diminishing (TVD), total variation bounded (TVB) and essentially non- 
oscillatory (ENO) mechanisms are introduced into the weighting functions. A one-pass Euler explicit 
transient algorithm with lumped mass matrix is used to integrate the equations. Numerical experiments with 
Burgers' equation, the Riemann problem and the two-blast-wave interaction problem are presented. Results 
indicate that accurate solutions in smooth regions and sharp and non-oscillatory solutions at discontinuities 
are obtainable even for strong shocks. 
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INTRODUCTION 

In recent years the development of the finite element methodology for the first-order hyperbolic 
system of conservation laws has become an active area of research. The earlier finite element 
developments include those of Wahlbin,' Dendy2 and Raymond and Garder3 for first-order 
hyperbolic equations. Hughes and Tezduyar4 generalized the streamline upwind/ 
Petrov-Galerkin procedure to hyperbolic conservation laws for one- and multidimensional 
problems. Donea' developed the Taylor-Galerkin algorithm in which the weak statement was 
formed on a Taylor series expansion of the unsteady equation, with higher-order derivatives re- 
expressed in terms of derivatives of the flux vector of the hyperbolic conservation laws. Baker and 
Kim6 generalized these concepts and proposed a Galerkin weak-statement formulation which 
encompasses over a dozen independently derived finite difference and finite element dissipative 
algorithms. Oden er al.' used a semi-explicit two-step algorithm for the analysis of unsteady 
inviscid compressible flow in arbitrary two-dimensional domains. 

However, in many cases, Gibbs-type oscillations of the solutions can still be observed owing to 
the presence of discontinuities, which are the main difficulty in the numerical solution of first- 
order hyperbolic conservation laws. An artificial viscosity or a limiter function is needed to 
control such oscillatory behaviour. 

Harten* developed the concept of TVD (total variation diminishing) and constructed second- 
order shock-capturing schemes using finite difference methods which have proved to be very 
successful in solving the compressible Euler equations for high-speed f l o ~ s . ~ - ' ~  Many desirable 
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properties of TVD schemes, such as stability and robustness in solving the hyperbolic conserva- 
tion laws with strong shocks, have been demonstrated. 

One characteristic of TVD schemes is that they are at most first-order accurate at non-sonic 
critical points. This restricts the accuracy of TVD schemes to be at most first-order in the 
&-norm and at most second-order in the L,-norm for general problems. 

To overcome this difficulty, Harten and Osher14 and Harten et ~ 1 . ” ~ ’ ~  have constructed E N 0  
(essentially non-oscillatory) schemes which use a local adaptive stencil to obtain information 
automatically from regions of smoothness when the solution develops discontinuities. As a result, 
approximations using these methods can achieve uniformly high-order accuracy right up to 
discontinuities, while keeping a sharp, essentially non-oscillatory shock transition. However, a 
convergence theory for E N 0  schemes is still not available at the present time. 

Numerical experiments on E N 0  schemes for the scalar conservation law in two dimensions 
and the Euler equation in one dimension have been reported.14-16 Also, results for two- 
dimensional gas-dynamic problems involving multiple-shock interactions have been given in 
Reference 17. 

In Reference 18 a class of TVB (total variation bounded) uniformly high-order schemes has 
been proposed for the hyperbolic conservation laws by Shu and Osher, which they claim share 
most of the advantages and may remove local degeneracy at the critical points of TVD schemes. 

The TVD, TVB and E N 0  concepts and the resulting so-called high-resolution schemes are 
mostly developed in the finite difference or finite volume setting. 

Hughes and Mallet’’ first translated the idea of TVD flux limiter functions from and 
Sweby’ into the finite element method. They introduced a similar limiter function in the 
weighting function which multiplies the time derivative term in the variational equations. A two- 
pass predictor-corrector explicit scheme was used for the time integration. High-precision results 
which match the quality of those obtained using finite difference methods were observed. Also, 
characteristic Galerkin methods for hyperbolic problems have been developed by 
Morton.zz Adaptive finite element shock-capturing schemes using a flux-corrected transport 
algorithm have been developed and applied to transient shock interaction problems.233 24 Most 
recently, a class of TVB discontinuous Galerkin finite element methods using high-order TVD 
Runge-Kutta-type time discretizations has been developed for the one-dimensional Euler 
 equation^.^' 

In this paper we follow and extend the work of Hughes and Mallet to construct several non- 
oscillatory shock-capturing Petrov-Galerkin finite element schemes for solving the one-dimen- 
sional Euler equations of gas dynamics. We propose a special weighting function which is 
different from that in Reference 18. A modified eigenvalue which is a function of ratios of 
consecutive gradients of conservative variables and the physical eigenvalues is embedded in the 
weighting function. The mechanism of TVD, TVB and EN0 properties can be implemented into 
the weighting functions in a rather straightforward manner. A linear shape function together with 
Roe average” are used to calculate the integrations of the generalized convection matrix. A one- 
pass explicit time integration algorithm is employed. 

In the following we first review some theoretical aspects of the Euler equations and related 
concepts employed in this study. A uniformly second-order non-oscillatory scheme using re- 
construction via deconvolution of degree two due to Harten et al. is briefly described. Forms 
suitable for extension to the finite element method are given. A Petrov-Galerkin finite element 
approximation for solving the one-dimensional Euler equations is described. Two different 
approaches are introduced. The first approach is based on the original Euler equations with a 
special weighting function which includes a modified eigenvalue to carry the TVD, TVB or E N 0  
mechanism. The second approach is based on Harten’s modified flux and a weighting function 
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which is similar to that in Reference 19. A simple explicit time integration method with a lumped 
mass matrix is adopted. 

Numerical experiments are carried out using the present non-oscillatory finite element schemes 
for the Burgers' equation and the Euler equations. The one-dimensional shock tube problem and 
the two-blast-wave interaction problem are simulated. A comparison of the performance of each 
method is made in terms of accuracy and CPU time and some concluding remarks are given. 

THEORETICAL CONSIDERATIONS 

We consider the motion of a perfect gas in a domain R c R' over a time interval [0, T ] .  Let D 
denote the space-time domain D = R x (0, T )  and let r denote the boundary of R. The governing 
equations of the 1D unsteady inviscid compressible gas dynamics in conservation law form is 

U , , +  F ( U ) , ,  = 0 on R, (1) 

where a comma stands for differentiation (i.e. U, = aU/at). We seek the solution U of equation (1) 
that satisfies the initial condition 

U ( x ,  0)  = Uo(x), X € R  (2) 
and a Dirichlet-type boundary condition 

a U = Y  o n r y ,  (3) 
where Uo is a given function, a is a boundary operator, 9 is a prescribed function and Tr is a 
subset of r. 

In equation ( l ) ,  U = [p,pu,e]' and F = [pu,pu2+p,u(e+p)lT, where p is the fluid 
density, u is the fluid velocity, e is the total energy and p is the pressure. For a perfect gas 
p = ( y -  l)(e-pu2/2), where y is the ratio of specific heats. Equation (1) can be expressed in 
quasi-linear form as 

U , , + 4 U ) U , ,  = 0, A(U) = a F / a u ,  (4) 
where A ( U )  is the Jacobian matrix. Owing to the hyperbolicity property of equation (l), A has 
real eigenvalues 

a' = u, a2 = u+c ,  a3 = u-c ,  ( 5 )  
where c = J(yp/p) is the speed of sound. The corresponding right-eigenvectors are 

rl(U) = [l, u,u2/2]', r z ( U )  = [l, u S c ,  H+uc]',  r 3 ( U )  = [l, u - c ,  H-UC]' ,  (6) 

where H = (e + p ) / p  = c2/(y  - 1) +$u2 is the total enthalpy per unit mass. We first form the matrix 
R, the columns of which are right-eigenvectors rk, 

R ( U )  = Cri(u), r 2 ( u ) ,  r3(u)I, 
and then define lk(u) to be the kth row in R - I ,  the inverse of R ( U ) .  We have 

I l ( U )  = [ l -  ru2/2, ru, - q, 
I,( U )  = [( ru2/2 - 4 4 2 ,  (- ru + 1/42 ,  V2], 
I ,  (u) = c( ~ u 2 / 2  + U / C ) ~ ,  (- ri - 1/42 ,  ~723, 

with Y= (y- l)/cZ. It then follows that 

A = R A R - ' ,  A = diag {ak} ,  
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and equation (4) can be cast into the following characteristic form: 

R - ~ U , , + A R - ~ U + ,  = 0. (9) 
For the purpose of analysis we assume that the coefficient matrix A is ‘frozen’, i.e. constant. We 
now define a characteristic variable V = ( v l ,  u2,  v3)T = R - I  U and transform equation (8) into the 
uncoupled system 

v:t+akU:, = 0, k = 1,2, 3. (10) 

Many numerical methods for solving the system (1) can be best understood by looking at the 
corresponding scheme for (lo), i.e. the scalar wave equation (dropping the superscript k) 

V,r+av,x = 0, a = constant. (1 1) 

NUMERICAL ADVECTION AND NON-OSCILLATORY SCHEMES 

Before we turn to the finite element method for solving equation (l), let us first examine a 
uniformly second-order E N 0  scheme for equation (1 1) using the reconstruction via deconvolu- 
tion (RD) with N = 2 developed by Harten et al.14-16 Then we examine a second-order TVB 
scheme due to Shu.’* 

Let us assume that our model consists of n,, elements and let e be the variable index for the 
elements; thus 1 I e I n,, and Re = [xj- 1, xi], the domain of the eth element, is taken to be an 
open set and its boundary is denoted by F. For finite difference methods we use the node values 
while for finite element methods we use both elements and nodes. We further assume uniform 
discretization (he = h = Ax). Let uj” denote the computed approximation to the exact solution 
v(x  = jAx,  t = t”). 

Uniformly second-order non-oscillatory schemes 

construction via deconvolution (RD) approach of degree two for equation (11) with a > 0. 
We consider the Harten-Osher non-oscillatory MUSCL-type scheme which uses the re- 

That is, for N = 2 using RD one has, for xj I x < x j +  1, 

where Q ( x ;  v )  is an E N 0  piecewise polynomial of order two. 
A simple calculation gives the algorithm for ( 0 1  < 1: 

A+v;-/Im(A+A+vj”, A-A+vjn)]}. 

Here the minmod function m and the function m are defined respectively by 

sgn(a)min((al, lbl), if ab 2 0, 
{o if ab -= 0, 

a if la1 I lbl, 
b if la1 > Ibl. 

m(a, b) = 

m(a, b) = 
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For the purpose of the present finite element methods, equation (13) can be cast into the following 
form: 

v n + l  j - - v ~ - o A - v ~ - o  n (';")A- __ {m[1 + p f i ( r + -  1, 1 - r - ) ,  r + - p r i i ( r + + - r + ,  r + -  1)]A- v;}, 

(16) 

whire the consecutive gradients r + ,  r +  +, r -  and r - -  at j - +  are given by 

and A* are the usual difference operators A *  vj = -k(vj, - v j ) ,  

The scheme defined by equation (13) is stable for ( 0 1  5 1. 
Here 1 = At/Ax is the mesh ratio and o = 1a is the Courant number, which can be a variable. 

For b = 0 we recover the second-order TVD scheme of Harten8 
For p = 9 we have the uniformly second-order E N 0  scheme of Harten and 0 ~ h e r . l ~  
In equation (13) one can replace both of the m by m to obtain another non-oscillatory 

scheme.I4 For further details of the methods the reader is encouraged to read the original 
papers. 14- l6 

It is also noted that other forms of equation (13) can be used to construct different algorithms, 
such as the following: 

Comparing equations ( 1  8) and (19) with equation (13), it is noted that we have used in (18) and 
(19) quantities of the form 

(y) A-vj  and s g n a ( 9 ) A - J  

respectively as the building elements, and the limiting functions m and m are limiting on such 
quantities. In Reference 17 equation (19) has been employed to construct uniformly second-order 
non-oscillatory schemes for the two-dimensional Euler equations in general curvilinear co- 
ordinates. 

It is rather constructive to have the schemes written in this form, since one can easily extend the 
algorithm for a single wave equation to that for a scalar conservation law and then to hyperbolic 
systems of conservation laws in a straightforward manner. 
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Total variation bounded scheme 

In Reference 18 a TVB modification of Harten’s second-order TVD scheme for conservation 
laws was given. Applying the TVB modification procedure to equation (13) with fl = 0, we have 

vj”” = v j”-gA-v j”-a  ( ~ 2 “ ) A - (3 [mc(M, Ax) (A  - vj”, bA + vj” ) + mc(M,  Ax)(A + , bA - vj” ) ]  1, 
(20) 

(21) 

where 

mc(M,  Ax) (A  + vj”, bA-  vJ?) = m [ A +  v;, bA - v; + M Ax2 sgn(A + v;)], 

with 1 < b I 3 and 50 I M 5 200. The scheme defined by equation (20) is TVB and second-order 
accurate except at sonic points under the CFL condition 

4 
Amax 5 __ - 1. 

j b + l  

We can express equation (20) in the form 

where G ( M ,  Ax)  is defined as 

m c ( M , A x ) ( l , b r + ) A - v j ”  = m 
A - v j  

- 

m c ( M ,  Ax) ( r+ ,  b ) A -  u j  = m 
A -  v j  

- 

PETROV-GALERKIN FINITE ELEMENT FORMULATION 

In this section we follow closely the work of Hughes and Mallet” except for a different definition 
of the weighting function and consider a weighted residual formulation for the problem defined 
by equations (lH3). 

We assume that trial functions U satisfy aU = $9 on Ts and the weighting functions W satisfy 
a W = 0 on Trs. Thus all Dirichlet-type boundary conditions are treated as essential boundary 
conditions in the present work. The trial function U and the weighting function Ware assumed to 
be taken from the same class of typical Co finite element interpolations. 

By applying the Petrov-Galerkin finite element method to equations (1H3) we have the 
following: 

n,r 

e = l  lae 
0 = C W‘(U,,+F,,)dQ. (25) 

We expand U in terms of a set of finite element basis, or shape functions as follows: 

V(X, t )  = C Nj(x)Uj( t ) ,  (26) 
j 

where j is a nodal index, N j  is the usual linear hat function associated with nodej, and U j  is the 
value of U at node j .  
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We also approximate the flux vector F in the following form: 

F ( x ,  t )  = 1 N j ( x ) F j ( t ) .  
j 

Spatial discretization of the weighted residual equation (25) via finite elements leads to the 
following semidiscrete system of ordinary differential equations: 

Md+Cv = 0, (28) 

where M = M(u, t) is the generalized mass matrix, C = C(o, t) is the generalized convection 
matrix, u is the vector of nodal values of U and a superposed dot denotes time differentiation. 

The arrays in equation (28) are assembled from element contributions: 

M = dF2  (me),  (29) 
me = [m;k],  

f l  

where the symbol d represents the finite element assembly operator, J and k are local element 
node numbers and N j  is the weighting function matrix. 

In Reference 19 Hughes and Mallet considered a one-parameter family of weighting functions 
of the following form: 

(35) fi: = 9 [ x j Z  + Rr"sgn ( N j ,  J ) R  - ' 1, 
where Z is the identity matrix and xi is the characteristic function associated with nodej. That is, 

and, in the element subdomain [ x j ,  x j +  1 ] ,  

r"= diag(I', 12, 1 3 ) ,  (37) 
where I' are limiters which are limiting on the characteristic variables aj = R-' U j .  For I"= I one 
recovers Osher's method. For further details see Reference 19. 

In the present work the weighting function matrix fi is given by - 
N j  = $[xjl  + Rdiag { (a"'/a')Nj,,} R -  ' 1 .  (38) 

It is noted that all the limiters are absorbed in a"' and the difference between equation (35) and 
equation (38) lies in the quantities which were limited. They are identical only for the scalar case, 
i.e. the scalar wave equation. 

We use standard Co piecewise linear interpolation for the shape function and adopt Roe's 
average to approximate the integration in equation (35). Then we have 
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where 

2' = Rdiag{ii")R-', d'* - - (a'+_d')/2. 

In equation (40) the a' are given by equation (5) and the ii' are the averaged modified 
eigenvalues in the element subdomain [xj, x j+ 1 ]  which are defined in such a way as to make the 
resulting scheme capable of precise resolution of discontinuities while maintaining formal 
accuracy in the smooth region. The main objective of the present work is to incorporate the non- 
oscillatory mechanisms of TVD, TVB and E N 0  in these modified eigenvalues d'. 

The transient algorithm for the present method is the one-step explicit scheme defined as 

a = -n?-'C(u")u", (41) 

u" + Ata. (42) U n + l  = 

In the above, @ is a lumped mass matrix which is given by 

~ ( A X ~ . - ~ / ~ + A X ~ + ~ / ~ ) I  if k = j  
Mjk = {o otherwise. (43) 

In the following we consider TVD, TVB and E N 0  schemes. We also consider a symmetric 
TVD scheme26 which is a generalization of Roe's2' and Davis's2' TVD Lax-Wendroff scheme. 
The definition of d' at  j + )  for each method is listed below. 

c= 1, Harten, 

1 < C < 2, Sweby, 
Qf$1/2 = max[O, min(Cr*, l), min(r*, C ) ] ,  11C12 C = 2, Roe's superbee, (48) 

(494 

(49W 

(50a) 

(50b) 

1 
@Ill2 = 0.5[%(r+, b ) + z ( l ,  br')]  

1,2 = 0.5[z(l ,  b r - ) + k ( r - ,  b ) ] ,  

Q:1/2 = m [ r + - B r i i ( r + + - r + , r + - l ) ,  l + ~ r i i ( r + - ~ ,  l - r - ) ] ,  

Q y  = m[1 -Brii(r+ - I ,  1 - r - ) ,  r -  + ~ f i ( l  - r - ,  r -  - r - - ) ] .  
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The functions y', and y*l are given by 

413 

and 

((z) = *[Y(z)-Az2], (54) 

Here E is a small positive constant. The gradient ratios I + ,  r - ,  I +  + and r -  - are evaluated at 
j+i. The uf are components of the conservative variables U j .  

For the system cases the definitions of I + ,  r - ,  r +  + and r -  - in equation ( 1  7) are given in terms of 
the characteristic variables aj+ = R,:>1,2(Uj+ - U j )  and R-' is evaluated using the Roe 
average. They are 

I I +  + 
ri+1/2 = aj+1/2/ai-l/2, rj-112 = ai+3/2/afi-1/2> 

r!- 1-112 = ~j-~//Iaf-11/2, I ri:;12 = a~-5 j2 /a f i -1 ,2 .  
In equation (47) if we set p = 0 we recover equation (45) with C = 1. The selection of the 

parameter C used in equation (48) was discussed by Sweby.' 
It is noted that if one takes G'=Y(d) in equation (38) then one has a first-order upwind finite 

element scheme (e.g. Osher's method). 
For the scalar wave equation and uniform elements one can deduce that the second-order 

E N 0  scheme is identical to the uniformly second-order E N 0  scheme in Reference 14 constructed 
using reconstruction via deconvolution (RD) with N = 2. 

We shall denote the schemes defined by equations (44H47) as the SYM, TVD, TVB and EN02 
schemes respectively. 

MODIFIED FLUX APPROACH 

Another way to achieve higher-order accuracy is based on an approach similar to Harten's 
modified flux approach. Let us consider a scalar conservation law 

u, f +f(u). x = 0, = aflau, (56) 

N j  = +[xj+sgn(aNj,.)]. (57) 

u , t + ( f + d . x  = 0, (58) 

(59) 

with weighting function defined as - 
The resulting scheme is first-order accurate. Consider a modified version (56), 

with weighting function - 
Nj = t Cxj + sgn (aM Nj,  x )I, 
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where 

UM = u + y .  

Here 7 is the characteristic speed introduced by the additional flux function g. The value of g at 
node j is defined by 

gj = S max(O,min(ij+ljzIA+ujlr S l j - ~ / ~ A - u j ) l ~  (60) 

S = sgn(A+ uj), (61) 

where 

(gj+i-gj)/A+uj i fA+uj#O, 
7 = { o  otherwise. 

The functions c(z)  and Y(z) are the same as those given before. 
The convection matrix for the j th  element is 

where 

For the various schemes we can simply give a proper definition of uM as in the previous section. 
This formulation can also be extended to non-linear systems. However, this formulation is not a s  
flexible as those mentioned above. 

NUMERICAL RESULTS 

The inviscid Burgers ' equation 

equation 
In the first example we show the results of applying the various schemes to the inviscid Burgers' 

u, ,  + (u2/2) , ,  = 0, (654 

(65b) u(x, 0) = & + +sin(zx), - 1 s x s 1. 

The exact solution is smooth up to t = 2/71, then it develops a moving shock which interacts with 
the rarefaction waves. We get the exact solution by using Newton-Raphson iteration. In this 
example we replace the weighting function in (38) by 

(66) 
- 

Nj = 5Cxj + (c/uf)Nj, X I ,  

with u' = u. 
Tables I-IV list the &-error, L,-error and &-error of the numerical solution of equation (65) 

using the SYM, TVD, TVB and EN02 schemes respectively for a mesh refinement sequence 
n,, = 20,40 and 80. The output time is t = 0.3 when the solution is still smooth and CFL = 0.5 
was used for each calculation. For the TVJ3 results, b = 2 and M = 50 were used. The value of r in 
Tables I-IV is the computed order of accuracy. From Tables 111 and IV we find that the 
computational order of accuracy of the TVB and EN02 schemes is similar. Comparing the 
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Table I. Errors in the numerical solution of equation (65) at t = 03; SYM 
scheme 

N Ll r L2 r L m  r 

20 1.643 (-2) 1.327 (-2) 2.1 59 ( -  2) 
40 4.419 (-3) 1.89 4.264 (-3) 1.64 9.300 (-3) 1.22 
80 1.221(-3) 1.85 1.392(-3) 1.62 4.096(-3) 1.18 

Table 11. Errors in the numerical solution of equation (65) at t = 03; TVD 
scheme 

~~ ~ 

N Ll r L2 r L m  r 

20 9'772 (-3) 9.147 ( -  3) 1.538 (-2) 
40 2.715 (-3) 1.85 2'750 (-3) 1.73 6.517 (-3) 1.24 
80 7*107(-4) 1.93 8.661 (-4) 1.67 2.976 (-3) 1.13 

Table 111. Errors in the numerical solution of equation (65) at t = 0.3; TVB 
scheme 

20 7.062 (-3) 6.934 ( - 3) 1.090 (-2) 
40 1.656 (-3) 2.09 1.746 (-3) 1.99 3.333 (-3) 1.71 
80 4.080 (-4) 2.02 4295 (-4) 2.02 8'727 (-4) 1.93 

Table JV. Errors in the numerical solution of equation (65) at t = 0.3; 
E N 0 2  scheme 

N L ,  r L2 r L ,  r 

20 6.966 (-3) 6.574 ( - 3) 1.068 (- 2) 
40 1.659 (-3) 2.07 1.707 (-3) 1.95 3.328 (-3) 1-68 
80 4.078 (-4) 2.02 4.321 (-4) 1.98 8'739 (-4) 1.93 

415 

results in Tables I-IV we find that the computational order r of the SYM and TVD schemes is 
inferior to that of the TVB and EN02  schemes. In Figures 1-4  we show the solutions a t  time 2/71 
using the above four schemes with 20,40 and 80 elements. At this time the shock begins to form 
and interacts with the rarefaction waves. At time t = 1.1 the interaction between the shock and 
the rarefaction waves is over. The solution becomes monotone between the shocks. Figures 5-8 
show the solutions at time t = 1.1 with 20,40 and 80 elements. We see that there is a very good 
shock transition in each case and no oscillations are observed. 
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Figure. 1. Finite element solution of inviscid Burgers’ 
equation at time t=2/n using the SYM scheme: 

(a)Ax=l/lQ(b)Ax=1/2Q (c)Ax=1/40 
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Figure 2. Same as Figure 1 for the TVD scheme 
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Figure 3. Same as Figure 1 for the TVB scheme 
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The shock tube problem 

For the hyperbolic system of conservation laws we consider the one-dimensional Euler 
equations and simulate the shock tube problem proposed by Sod.29 The initial conditions at both 
sides of the diaphragm (initially at xo = 0.5) are 

p L  = 1.0, U L  = 0, p L  = 1.0, 
pR = 0.125, uR = 0, pR = 01, 

where the subscripts L and R stand for the left and right side of the diaphragm respectively. The 
number of elements used is 100. The results at time t = 0.24 (after 60 integration steps) are shown 
together with the exact solution (solid line) in Figures 9-12 for each method. From Figure 9 we 
find that the SYM scheme is more diffusive than the other schemes for the solution near the 
contact discontinuity. From Figures 10-12, we observe that the TVB and EN02 schemes 
demonstrate slight oscillation near the shock but give sharper resolution near the contact 
discontinuity. These mild oscillatory behaviours are allowable features of the essentially non- 
oscillatory schemes. 

The CPU times needed on a Convex C-1 computer for 60 time integrations using the SYM, 
TVD, TVB and EN02 schemes are 3.16, 3.16, 3.46 and 3.35 respectively. 

We also experimented with the scheme defined by equation (45) using the different formulation 
with different weighting function. Since the results were almost the same as those of the TVD 
scheme, we do not include those figures here. 
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Figure 9. Solution of 1D shock tube flow using the SYM scheme 
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Figure 12. Solution of ID shock tube flow using the EN02 scheme 

The two-blast-wave interaction problem 

The third numerical experiment is the problem of two interacting blast waves suggested by 
Woodward and Colella; we refer the reader to Reference 30 where a comprehensive comparison 
of the performance of various schemes for this problem was presented. The initial conditions are 
given as follows: 

P L  = 1, UL = 0, p L  = 1000, 0 5 x <0.1, 

P M  = UM = 0, p M  = 0.01, 0 1  5 x < 09, 

P R  = l ,  UR = 0, PR = 100, 0 9 I x <  1. 

The boundaries at x = 0 and x = 1 are solid walls and reflection boundary conditions are 
employed. In our calculations we used Ax = 0.005 (200 elements) and CFL = 0.95. Figures 13-16 
show the density and velocity distributions for the SYM, TVD, TVB and EN02 schemes 
respectively. The solid line is the 'exact' solution taken from Reference 30 using a scanner, while 
the circles are the present numerical-results. The quality of the results for the EN02 scheme is 
better than for those of the TVD scheme, as can be seen from the height of the first peak in the 
density profile. Again, slight oscillations are observed for the TVB and EN02 schemes. In 
general, good results are obtained in all cases. The CPU times for this problem using the SYM, 
TVD, TVB and EN02 schemes are 38.66, 38.79, 40.09 and 41.55 s respectively. All the calcu- 
lations were done on a Convex C1 computer. 
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CONCLUDING REMARKS 

In this paper, following and extending the work of Hughes and Mallet,” we have described a new 
class of non-oscillatory shock-capturing Petrov-Galerkin finite element methods for the one- 
dimensional compressible Euler equations and applied them to unsteady gas-dynamical prob- 
lems with strong shocks. Two different approaches are introduced. The first approach is based on 
introducing a modified eigenvalue into the weighting function which enables us to accommodate 
various different non-oscillatory mechanisms such as total variation diminishing, total variation 
bounded and essentially non-oscillatory. The second approach, which is less flexible than the first, 
is based on a modified flux function with a weighting function similar to that of Hughes and 
Mallet. A one-pass explicit time integration scheme with a ‘lumped‘ mass matrix was employed 
for both approaches. The Roe average was used to evaluate the stiff matrix. Numerical 
experiments with the present finite element methods for the one-dimensional Euler equations 
indicate that accurate solutions in the smooth region and non-oscillatory solutions at dis- 
continuities are obtainable. 

The extension to multidimensional problems is a subject of future work. We refer the reader to 
Reference 3 1 for multidimensional advectivediffusive systems. 
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